SYNTHESIS OF DERIVATIVES OF 3-CYANO-6-METHYL-5-PHENYLCARBAMOYLPYRIDINE-2(1H)-THIONE AND 3-CYANO-6-METHYL-5-PHENYL-CARBAMOYLPYRIDINE-2(1H)-SELENONE

Ya. Yu. Yakunin¹, V. D. Dyachenko¹, and V. P. Litvinov²

The reaction of ethoxymethylenacetylacetanilide with cyanothioacetamide or cyanoselenoacetamide in the presence of N-methylmorpholine and alkylating agents gave substituted 2-alkylthio- and 2-alkylselenopyridines and thieno[2,3-b]pyridines.

Keywords: 2-alkylthiopyridines, 2-alkylselenopyridines, thieno[2,3-b]pyridines.

4-R-3-Cyano-6-methyl-5-phenylcarbamoylpyridine-2(1H)-thiones have been synthesized through the condensation of aldehydes, the anilide of acetoacetic acid, and cyanothioacetamide. Depending on the nature of the aldehyde used, 4-alkyl- [1, 2], 4-aryl- [3,4], 4-hetaryl- [5-8], or 4-cyclohexanespiropyridinethiones [9] were obtained. Interest in these pyridinethione derivatives is related to their liver protection activity [10]. Since the 4-unsubstituted analogs of these compounds have not been reported, we developed a method for the synthesis of derivatives of 3-cyano-6-methyl-5-phenylcarbamoylpyridine-2(1H)-thiones and 3-cyano-6-methyl-5-phenylcarbamoylpyridine-2(1H)-thiones.

2 a X = S, b X = Se; 4, 5 a R = H, Hal = I; b R = Et, Hal = Br; c R = H₂C=CH, Hal = Br; d R = Ph, Hal = Cl; e R = H₂NC(O), Hal = I; f R = 3-cyano-6-methyl-2-methylthiopyridin-5-yl, Hal = Br; g R = Me, Hal = I; 6, 7 a R¹= 4-BrC₆H₄, Hal= Br, b R¹= 3-cyano-6-methyl-2-methylthiopyridin-5-yl, Hal = Br; 9 a R = H, b R = Me, c R = Ph; B = N-methylmorpholine

¹ Taras Shevchenko Lugansk State Pedagogical University, 348011 Lugansk, Ukraine; e-mail: kgb@lgpi.lugansk.ua. ² N. D. Zelinsky Institute of Organic Chemistry, 119913 Moscow, Russia; e-mail: vpl@cacr.ioc.ac.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 831-835, June, 2001. Original article submitted October 11, 1999.

Com- pound	Empirical formula	Found, % Calculated, %				00*	IR spectrum, cm ⁻¹			Yield,
		С	Н	N	S	mp, ℃*	C=N NH2	C=O NH	H NMK spectrum, o, ppm, J (Hz)	%
1	2	3	4	5	6	7	8	9	10	11
3	$C_{14}H_{11}N_3OS$	$\frac{62.54}{62.43}$	<u>4.22</u> 4.13	$\frac{15.60}{15.59}$	<u>11.91</u> 11.92	250-252	2220	1640, 3200, 3320	2.53 (3H, s, CH ₃); 7.34-7.64 (5H, m, Ph); 8.30 (1H, s, C(4)H); 10.30 (1H, br. s, NHCO); 14.27 (1H, br. s, NH)	86
5a	$C_{15}H_{13}N_3OS$	<u>63.68</u> 63.56	$\frac{4.52}{4.63}$	$\frac{14.73}{14.84}$	$\frac{11.32}{11.32}$	190-192	2220	1640, 3270	2.66 (6H, br. s, CH ₃ and SCH ₃); 7.22-7.72 (5H, m, Ph); 8.38 (1H, s, C(4)H)	80
5b	C ₁₇ H ₁₇ N ₃ OS	<u>65.67</u> 65.58	<u>5.50</u> 5.58	<u>13.49</u> 13.49	<u>10.40</u> 10.31	160-162	2220	1640, 3250	1.00 (3H, t, <i>J</i> = 6.4, CH ₃ CH ₂); 1.71 (2H, m, CH ₃ CH ₂); 3.31 (2H, t, <i>J</i> = 5.9, SCH ₂); 7.10-7.72 (5H, m, Ph); 8.36 (1H, s, C(4)H); 10.45 (1H, br. s, NH)	92
5c	C ₁₇ H ₁₅ N ₃ OS	<u>66.10</u> 66.02	$\frac{4.99}{4.88}$	<u>13.48</u> 13.58	$\frac{10.39}{10.35}$	157-159	2210	1640, 3290	2.65 (3H, s, CH ₃); 3.99 (2H, d, <i>J</i> = 6.4, SCH ₂); 5.13 (d, <i>J</i> = 9.1) and 5.34 (d, <i>J</i> = 15.9), (for 1H, CH ₂ =); 5.93 (1H, m, CH=); 7.08-7.70 (5H, m, Ph); 8.36 (1H, s, C(4)H); 10.42 (1H, br. s, NH)	88
5d	C ₂₁ H ₁₇ N ₃ OS	$\frac{70.17}{70.15}$	$\frac{4.67}{4.76}$	$\frac{11.79}{11.70}$	<u>8.82</u> 8.94	161-163	2220	1640, 3250	2.69 (3H, s, CH ₃); 4.58 (2H, s, SCH ₂); 7.20-7.70 (10H, m, CH ₂ Ph and HNPh); 8.37 (1H, s, C(4)H); 10.46 (1H, br. s, NH)	85
5e	$C_{16}H_{14}N_4O_2S$	<u>58.88</u> 58.87	$\frac{4.42}{4.30}$	<u>17.27</u> 17.19	<u>9.72</u> 9.83	208-210	2220, 3400	1640, 1660, 3290	2.71 (3H, s, CH ₃); 4.02 (2H, s, SCH ₂); 6.98 br. s and 7.467 br. s (for 1H, NH ₂); 7.07-7.79 (5H, m, Ph); 8.23 (1H, s, C(4)H); 10.30 (1H, br. s, NH)	87

TABLE 1. Characteristics of Compounds 3, 5a-f, 7a,b, and 9a-c

TABLE 1	(continued)
---------	-------------

1	2	3	4	5	6	7	8	9	10	11
5f	C ₂₄ H ₁₉ N ₅ O ₂ S ₂	<u>60.97</u> 60.86	$\frac{4.04}{4.05}$	<u>14.89</u> 14.78	<u>13.64</u> 13.55	218 subl.	2225	1650, 1710, 3270	2.67 (6H, s, SCH ₃ and 6-CH ₃ methylthiopyridin-5-yl); 4.74 (2H, s, SCH ₂); 7.07-7.79 (5H, m, Ph); 8.25 s and 8.86 s (for 1H, C(4)H pyridine); 10.29 (1H, br. s, NH)	60
7a	C ₂₂ H ₁₆ BrN ₃ O ₂ S	<u>56.56</u> 56.65	<u>3.66</u> 3.47	<u>9.01</u> 9.00	<u>6.78</u> 6.89	302-305	3400	1650, 1660, 3270	2.27 (3H, s, CH ₃); 7.09-7.92 (9H, m, Ph and C ₆ H ₄); 8.43 (2H, br. s, NH ₂); 8.80 (1H, s, C(4)H); 10.45 (1H, br. s, NH)	89
7b	$C_{24}H_{19}N_5O_2S_2$	$\frac{60.77}{60.85}$	$\frac{4.04}{4.05}$	$\frac{14.65}{14.76}$	<u>13.44</u> 13.54	279-281	2210, 3400	1650, 3270	2.59 s, 2.61 s and 2.69 s (for 3H, CH ₃); 7.07-7.74 (5H, m, Ph); 8.14 br. s and 8.81 br. s (for 1H, C(4)H pyridine); 8.45 (2H, br. s, NH ₂); 10.44 (1H, br. s, NH)	78
9a	C ₁₅ H ₁₃ N ₃ OSe	<u>54.45</u> 54.56	<u>3.87</u> 3.96	<u>12.72</u> 12.73	<u>23.81</u> 23.90	202-204	2220	1640, 3290	2.57 (3H, s, SeCH ₃); 2.66 (3H, s, CH ₃); 7.09-7.72 (5H, m, Ph); 8.33 (1H, s, C(4)H); 10.43 (1H, br. s, NH)	83
9b	C ₁₆ H ₁₅ N ₃ OSe	<u>55.92</u> 55.80	$\frac{4.39}{4.40}$	$\frac{12.11}{12.23}$	<u>22.84</u> 22.93	135-137	2230	1660, 3290	1.50 (3H, t, <i>J</i> = 6.9, <u>CH</u> ₃ CH ₂); 2.66 (3H, s, CH ₃); 3.30 (2H, s, CH ₃ <u>CH₂);</u> 7.12-7.72 (5H, m, Ph); 8.33 (1H, s, C(4)H); 10.43 (1H, br. s, NH)	75
9c	$C_{21}H_{17}N_3OSe$	$\tfrac{62.07}{62.06}$	$\frac{4.12}{4.23}$	$\frac{11.34}{11.33}$	<u>19.53</u> 19.44	184-186	2220	1680, 3300	2.73 (3H, s, CH ₃); 4.62 (2H, s, CH ₂); 7.02-7.79 (10H, m, CH ₂ Ph and HNPh); 8.31 (1H, s, C(4)H); 10.42 (1H, br. s, NH)	82

 $\overline{* \text{ EtOH }}$ for crystallization of **3**, DMF for other products.

The reaction of ethoxymethylenacetylacetanilide (1) with cyanothioacetamide (2a) in the presence of N-methylmorpholine in absolute ethanol at 25°C gave 3-cyano-6-methyl-5-phenylcarbamoylpyridine-2(1H)-thione (3) as indicated by the spectral data. The IR spectra of thione 3 has bands for stretching vibrations of a conjugated nitrile group in the vicinity of 2220 cm⁻¹, imino groups at 3200-3320 cm⁻¹, and carbonyl group in the vicinity of 1640 cm⁻¹. The ¹H NMR spectra show characteristic signals for protons of the methyl group at 2.54 ppm, phenyl group and pyridine C(4)H at 7.34-7.64 and 8.30 ppm, and NH protons of the carbamoyl fragment and pyridine ring at 10.30 and 14.27 ppm, respectively.

Alkylation of thione **3** by halides **4a-f** in DMF in the presence of an equimolar amount of KOH proceeds regioselectively, leading to the corresponding alkylthiopyridines **5a-f**. The use of aroylmethyl halides (**6a**) and hetaroylmethyl halides (**6b**) in the alkylation of thione **3** in the presence of a two-fold excess of KOH leads to 3-amino-2-aroyl- (**7a**) and 3-amino-2-hetaroyl-6-methyl-5-phenylcarbamoylthieno[2,3-*b*]pyridines (**7b**).

The reaction of 1 with cyanoselenoacetamide 2b in the presence of base in absolute ethanol in an argon atmosphere did not yield 3-cyano-6-methyl-5-phenylcarbamoylpyridine-2(1H)-selenone (8) as a pure compound, probably due to the strong tendency of selenone 8 to undergo oxidation [11]. However, 2-alkylselenopyridines 9a-c were obtained upon introducing alkyl halides 4a,d,f into the reaction mixture. The structure of these products suggests the intermediate formation of selenone 8.

The structures of **3**, **5a-f**, **7a,b**, and **9a-c** are in accord with their physico-chemical characteristics (Table 1).

EXPERIMENTAL

The IR spectra were taken on an IKS-29 spectrometer for vaseline mulls. The ¹H NMR spectra were registered on a Bruker WP-100SY spectrometer at 100 MHz, Bruker AM-300 spectrometer for **5e** at 300.13 MHz, and Gemini-200 spectrometer for **5f**, **7a,b** at 199.975 MHz for solutions in DMSO-d₆ with TMS as the internal standard. The reaction course and purity of the products were monitored by thin-layer chromatography on Silufol-254 plates with 3:5 acetone–heptane as the eluent and iodine vapor as the developer.

3-Cyano-6-methyl-5-phenylcarbamoylpyridine-2(1H)-thione (3). A mixture of ethoxyethylene **1** (10 g, 42.9 mmol), cyanothioacetamide **2a** (4.29 g, 42.9 mmol), and N-methylmorpholine (4.8 ml, 42.9 mmol) was stirred in absolute ethanol at 25°C for 2 h. The precipitate formed was filtered off and washed with absolute ethanol and hexane to give thione **3** (Table 1).

2-Alkylthio-3-cyano-6-methyl-5-phenylcarbamoylpyridines (5a-f). A sample of 10% aqueous KOH (2 ml, 3.7 mmol) was added with stirring to a suspension of thione **3** (1 g, 3.7 mmol) in DMF (10 ml). After 5 min, the corresponding alkyl halide **4a-f** (3.7 mmol) was added, and the mixture was stirred for 4 h. The precipitate formed was filtered off and washed with ethanol and hexane to give **5a-f** (Table 1)

3-Amino-2-aroyl- (7a) and 3-amino-2-hetaroyl-6-methyl-5-phenylcarbamoylthieno[2,3-b]pyridines (7b). A sample of 10% aqueous KOH (2 ml, 3.7 mmol) was added with stirring to a suspension of thione **3** (1 g, 3.7 mmol) in DMF (10 ml). After 5 min, the corresponding aroyl halide (**6a**) or hetaroyl halide (**6b**) (3.7 mmol) was added. After 0.5 h, another 10% aqueous KOH (2 ml) was added and the mixture was stirred for an additional 4 h. The precipitate formed was filtered off and washed with ethanol and hexane (Table 1).

4-Alkylseleno-3-cyano-6-methyl-5-phenylcarbamoylpyridines (9a-c). A mixture of ethoxyethylene **1** (2 g, 8.57 mmol), cyanoselenacetamide **2b** (1.3 g, 8.57 mmol), and N-methylmorpholine (0.96 ml, 8.57 mmol) in absolute ethanol was stirred for 2 h in an argon atmosphere at 25°C. Then, the corresponding alkyl halide **4a,d,f** (8.57 mmol) was added and the mixture was stirred for 4 h. The precipitate formed was separated and washed with ethanol and hexane to give **9a-c** (Table 1).

This work was carried out with the financial support of the Russian Fund for Basic Research (Project No. 99-03-32965).

REFERENCES

- 1. V. D. Dyachenko, S. G. Krivokolysko, and V. P. Litvinov, Khim. Geterotsikl. Soedin., 1232 (1996).
- 2. V. D. Dyachenko, S. G. Krivokolysko, and V. P. Litvinov, *Khim. Org. Khim.*, 34, 750 (1998).
- 3. V. D. Dyachenko, S. G. Krivokolysko, and V. P. Litvinov, Khim. Geterotsikl. Soedin., 560 (1997).
- 4. V. D. Dyachenko, S. G. Krivokolysko, V. N. Nestorov, and V. P. Litvinov, *Khim. Geterotsikl. Soedin.*, 1243 (1996).
- 5. S. G. Krivokolysko, V. D. Dyachenko, and V. P. Litvinov, *Khim. Geterotsikl. Soedin.*, 672 (1997).
- 6. V. D. Dyachenko, S. G. Krivokolysko, and V. P. Litvinov, *Khim. Org. Khim.*, 34, 927 (1998).
- 7. V. D. Dyachenko, S. G. Krivokolysko, and V. P. Litvinov, *Khim. Geterotsikl. Soedin.*, 666 (1997).
- 8. S. G. Krivokolysko, V. D. Dyachenko, and V. P. Litvinov, *Khim. Org. Khim.*, **33**, 1088 (1997).
- 9. V. D. Dyachenko, S. G. Krivokolysko, and V. P. Litvinov, *Khim. Geterotsikl. Soedin.*, 1533 (1997).
- 10. V. D. Krauze, A. G. Odynets, A. A. Verreva, S. K. Germane, A. N. Kozhukhov, and G. Ya. Dubur, *Khim.-Farm. Zh.*, **25**, No. 7, 40 (1991).
- 11. V. D. Dyachenko, Chemical Sciences Candidate's Dissertation, Moscow (1990).